Sequential Hypothesis Test with Online Usage-Constrained Sensor Selection
نویسندگان
چکیده
This work investigates the sequential hypothesis testing problem with online sensor selection and sensor usage constraints. That is, in a sensor network, the fusion center sequentially acquires samples by selecting one “most informative” sensor at each time until a reliable decision can be made. In particular, the sensor selection is carried out in the online fashion since it depends on all the previous samples at each time. Our goal is to develop the sequential test (i.e., stopping rule and decision function) and sensor selection strategy that minimize the expected sample size subject to the constraints on the error probabilities and sensor usages. To this end, we first recast the usage-constrained formulation into a Bayesian optimal stopping problem with different sampling costs for the usage-contrained sensors. The Bayesian problem is then studied under both finiteand infinite-horizon setups, based on which, the optimal solution to the original usage-constrained problem can be readily established. Moreover, by capitalizing on the structures of the optimal solution, a lower bound is obtained for the optimal expected sample size. In addition, we also propose algorithms to approximately evaluate the parameters in the optimal sequential test so that the sensor usage and error probability constraints are satisfied. Finally, numerical experiments are provided to illustrate the theoretical findings, and compare with the existing methods.
منابع مشابه
A sequential test selection algorithm for fault isolation
A sequential test selection algorithm is proposed which updates the set of active test quantities depending on the present minimal candidates. By sequentially updating the set of active test quantities, computational time and memory usage can be reduced. If test quantities are generated on-line, a sequential test selection algorithm gives information about which test quantities that should be c...
متن کاملOnline Selection of Alternating Subsequences from a Random Sample
We consider sequential selection of an alternating subsequence from a sequence of independent, identically distributed, continuous random variables, and we determine the exact asymptotic behavior of an optimal sequentially selected subsequence. Moreover, we find (in a sense we make precise) that a person who is constrained to make sequential selections does only about 12 percent worse than a pe...
متن کاملApplying Combined Approach of Sequential Floating Forward Selection and Support Vector Machine to Predict Financial Distress of Listed Companies in Tehran Stock Exchange Market
Objective: Nowadays, financial distress prediction is one of the most important research issues in the field of risk management that has always been interesting to banks, companies, corporations, managers and investors. The main objective of this study is to develop a high performance predictive model and to compare the results with other commonly used models in financial distress prediction M...
متن کاملRelationship between the Online Social Networks Addiction and Psychological Disorders
Background: The Online social networks addiction like others type of addiction can lead to ethical dilemmas, as well as it can be affected from psychological disorders. So, the aim of this research is to analyze the effect of depression, anxiety and usage time of online social networks on the level of online social networks addiction and on the life satisfaction. Method: The method of research ...
متن کاملFocus of Attention: a Challenge on Predicting Constrained Action Hypothesis
Focus of attention instruction has a great influence on performance and learning. The purpose of this study was to examine the predicted constrained action hypothesis in badminton backhand serv. 30 women student participants from physical education classes of University of Kharazmi are selected as sample. Participants are tested in probe task at different stage of serve after identifying base o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1601.06447 شماره
صفحات -
تاریخ انتشار 2016